

Material - ASTM A 29 1017

Standard Specification For Carbon Steel Compositions For Forging To Hot-Rolled And Cold-Finished Steel and Bar

Group - Ferrous Mild Steel Alloys

Sub Group - ASTM A 29 1017 Carbon Steel Compositions For Forging To Hot-Rolled And Cold-Finished Steel and Bar Application - Intended for Valve, Pump, General Engineering, Automotive and Other Industries Grade Belongs to the Industry - Steel and Bar

Chemical Composition		Heat Treatment	
C %	0.150 - 0.200	As Raw or Annealing or Normalizing or Hardening and Tempering	
Mn %	0.300 - 0.600		
P %	0.040 Max.		izing or Hardaning and
S %	0.050 max.		•
Cu %	0.200 max.		g
В %	0.0005 - 0.003		
Si %	0.100 max.		
Al %	0.020 max.		
Nb %	0.025 max.	Mechanical Pro	perties
V %	0.050 max.	Tensile Strength in Mpa	370 - 410
Fe %	Balance	Yield Strength in Mpa	200 min.
-	-	Elongation in %	18 min.
-	-	Reduction of Area in %	40 - 50
-	-	Hardness in HB	105 - 116
-	-	Impact in Joule	-
	C % Mn % P % S % Cu % B % Si % Al % Nb % V % Fe % -	C % 0.150 - 0.200 Mn % 0.300 - 0.600 P % 0.040 Max. S % 0.050 max. Cu % 0.200 max. B % 0.0005 - 0.003 Si % 0.100 max. Al % 0.020 max. Nb % 0.025 max. V % 0.050 max. Fe % Balance	C % 0.150 - 0.200 Mn % 0.300 - 0.600 P % 0.040 Max. S % 0.050 max. Cu % 0.200 max. B % 0.0005 - 0.003 Si % 0.100 max. Al % 0.020 max. Nb % 0.025 max. V % 0.050 max. Fe % Balance Fe % Balance Fe % Belongation in % Reduction of Area in % Hardness in HB

Cross Reference Table				
Material	Standard	Country Grade Belong to the Industry		
G10170	UNS	USA	Bars, Wire Rods and Tubing	
1017	SAE	USA	Steel and Bar	
1017	AISI	USA	Tubing	
A 1040 1017	ASTM	USA	Steel	
A 29 M1017	ASTM	USA	Steel and Bar	
A 510 1017	ASTM	USA	Wire Rod and Round Wire	
A 513 Grade 1017	ASTM	USA	Tubing	

Further any inquiry to discuss with Gravity Cast Pvt. Ltd. – Gravity Group of Companies team member Call on +918469160029, or email marketing@gravitycastindia.com

All information in our data sheets and website is indicative only and is not intended to be a substitute for the full specification from which it is extracted. It is intended to provide typical values to allow comparison between metal alloy option rather than a definitive statement of mechanical performance or suitability for a particular application as these will vary with temperature, product type and product application. It is presented apart from contractual obligations and does not constitute any guarantee of properties or of processing or application possibilities in individual cases. Our warranties and liabilities are stated exclusively in our terms of business.